DPP - 9 (Basic Maths)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/36

Video Solution on YouTube:-
 https://youtu.be/6eBT8_y4PTE

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/70

Q 1. Find the velocity of particle if the position of particle is given as $x=\left(3 t^{2}-2\right) \mathrm{m}$?
(a) $v=(3 t-1) \mathrm{m} / \mathrm{s}$
(b) $v=(6 t-1) \mathrm{m} / \mathrm{s}$
(c) $v=(6 t) \mathrm{m} / \mathrm{s}$
(d) None of these

Q 2. Find the acceleration of particle if the position of particle is given as $x=\left(3 t^{2}-2\right) \mathrm{m}$?
(a) $a=6 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a=3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $a=6 \mathrm{tm} / \mathrm{s}^{2}$
(d) None of these

Q 3. Find the acceleration of particle if the velocity of particle is given as $V=\left(16 t^{2}-2 t+3\right) \mathrm{m} / \mathrm{s}$?
(a) $a=(32 t-2) \mathrm{m} / \mathrm{s}^{2}$
(b) $a=\left(16 t^{2}-2 t\right) \mathrm{m} / \mathrm{s}^{2}$
(c) $a=32 t \mathrm{~m} / \mathrm{s}^{2}$
(d) None of these

Q 4. Find the acceleration of particle at $t=2 \sec$ if the position of particle is given as
$x=\left(t^{2}-2 t+1\right) m$?
(a) $a=4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a=2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $a=3 \mathrm{~m} / \mathrm{s}^{2}$
(d) None of these

Q 5. Find the acceleration of particle at $t=2 \mathrm{sec}$ if the velocity of particle is given as $v=\left(t^{2}-2 t+1\right) \mathrm{m} / \mathrm{s}$?
(a) $a=4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $a=2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $a=3 \mathrm{~m} / \mathrm{s}^{2}$
(d) None of these

Q 6. The displacement-time graph of a body is shown in figure below. The velocity-time graph of the motion of the body will be:

(a)

(b)

(c)

Q 7. A displacement-time graph of a body moving with uniform velocity is shown in the figure. Find out its velocity at time $t=4$ seconds:

(a) $v=4 \mathrm{~m} / \mathrm{s}$
(b) $v=2 \mathrm{~m} / \mathrm{s}$
(c) $v=3 \mathrm{~m} / \mathrm{s}$
(d) None of these

Q 8. In Figure as shown below the velocity of the body at topmost point A is:

(a) zero
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) Infinite
(d) Maximum

Q 9. The position-time graphs below represent the motions of cars 1 to 4. How do they rank, according to their speeds (greatest first)?
(a) $1,2,3,4$
(b) $2,1,4,3$
(c) $4,3,2,1$
(d) None of these

Q 10. The displacement-time graph of a moving particle is shown. The instantaneous velocity of the particle is negative at the point :-

(a) D
(b) F
(c) C
(d) E

Q 11. A particle moves along a straight line OX. At a time t (in seconds) the distance x (in meters) of the particle is given by $x=40+12 t-t^{3}$. How much distance will the particle travel before coming to rest?
(a) 24 m
(b) 56 m
(c) 40 m
(d) 16 m

Q 12. A particle moves in a straight line with an acceleration a ms^{-2} at time ' t ' seconds where $\mathrm{a}=-\frac{1}{t^{2}}$. At time $\mathrm{t}=1 \mathrm{~s}$ the particle has a velocity of $3 \mathrm{~ms}^{-1}$ then find the velocity when $\mathrm{t}=4 \mathrm{~s}$
(a) $1.25 \mathrm{~m} / \mathrm{s}$
(b) $3.5 \mathrm{~m} / \mathrm{s}$
(c) $2.25 \mathrm{~m} / \mathrm{s}$
(d) $0.5 \cdot \mathrm{~m} / \mathrm{s}$

Q 13. Velocity of a particle as function of displacement x is given by $v=b x^{\frac{1}{2}}$. Then the displacement as function of time is
(a) bt
(b) $\frac{b^{2} t^{2}}{4}$
(c) $\frac{b t}{4}$
(d) $\frac{b^{2} t^{3}}{4}$

Q 14. The acceleration of a particle as a function of time t is given as $\mathrm{a}=\mathrm{k} t^{\frac{5}{2}}$. If initial speed of the particle (at $t=0$) is u then its velocity v as a function of time t is given as:
(a) $\mathrm{V}=\mathrm{u}+\frac{2}{5} \mathrm{k} t^{\frac{5}{2}}$
(b) $\mathrm{V}=\mathrm{u}+\frac{2}{7} \mathrm{k} t^{\frac{7}{2}}$
(c) $\mathrm{V}=\mathrm{u}+\mathrm{k} t^{\frac{5}{2}}$
(d) $\mathrm{V}=\mathrm{u}+\mathrm{k} t^{\frac{7}{2}}$

Q 15. For a particle moving along x -axis, acceleration is given as $\mathrm{a}=\mathrm{v}$. Find the position as a function of time? Given that at $t=0, x=0, v=1 \mathrm{~m} / \mathrm{s}$
(a) $e^{t}-1$
(b) $e^{2 t}-1$
(c) $\frac{e^{t}}{2}$
(d) $e^{t}+1$

Q 16. The acceleration of particle is a function of position is given by $\mathrm{a}(\mathrm{x})=4-2 \mathrm{x} \mathrm{m} / \mathrm{s}^{2}$. Then velocity $\mathrm{v}(\mathrm{x})$ is equal to [given that $\mathrm{v}(0)=0$]
(a) $\sqrt{4 x-x^{2}}$
(b) $\sqrt{2\left(4 x-x^{2}\right)}$
(c) $\left(4 x-x^{2}\right)$
(d) $2\left(4 x-x^{2}\right)$

Answer Key

